Activity: Analyzing the Magnitude and Direction of Magnetic Force Solution

Magnetic Force Calculations

Computed Magnetic Force Values

Case Force (N) Charge (C) Velocity (m/s) Magnetic Field Strength (T)
A 0.12 N 2.0 × 10⁻⁶ C 3.0 m/s, East 20 T
B 2.0 × 10⁻¹³ N -1.6 × 10⁻¹⁹ C 2.5 × 10⁶ m/s, North 0.5 T, Upward
C 0.08 N 2.0 × 10⁻⁶ C 4.0 m/s, South 0.1 T, West
D 0.20 N 1.0 × 10⁻⁶ C 0.5 m/s 0.4 T, Downward
E 3.2 × 10⁻⁷ N 3.2 × 10⁻⁶ C 2.0 m/s, West 0.05 T, North
F 0.15 N 5.0 × 10⁻⁶ C 1.5 m/s, North 20 T
G 9.6 × 10⁻¹³ N 1.6 × 10⁻¹⁹ C 3.0 × 10⁶ m/s, East 0.2 T, Downward
H 0.25 N 5.0 × 10⁻⁶ C 5.0 m/s, West 0.1 T, South
I 0.10 N 2.5 × 10⁻⁶ C 2.0 m/s 0.2 T, East
J 9.0 × 10⁻⁷ N -3.0 × 10⁻⁶ C 1.0 m/s, South 0.3 T, Upward

Solutions Per Letter

A: Find \( B \)

\( B = \frac{0.12 \text{ N}}{(2.0 × 10^{-6} \text{ C})(3.0 \text{ m/s})} = 20 \text{ T} \)

B: Find \( F \)

\( F = (-1.6 × 10^{-19} \text{ C})(2.5 × 10^{6} \text{ m/s})(0.5 \text{ T}) = -2.0 × 10^{-13} \text{ N} \)

C: Find \( q \)

\( q = \frac{0.08 \text{ N}}{(4.0 \text{ m/s})(0.1 \text{ T})} = 2.0 × 10^{-6} \text{ C} \)

D: Find \( v \)

\( v = \frac{0.20 \text{ N}}{(1.0 × 10^{-6} \text{ C})(0.4 \text{ T})} = 0.5 \text{ m/s} \)

E: Find \( F \)

\( F = (3.2 × 10^{-6} \text{ C})(2.0 \text{ m/s})(0.05 \text{ T}) = 3.2 × 10^{-7} \text{ N} \)

J: Find \( F \)

\( F = (-3.0 × 10^{-6} \text{ C})(1.0 \text{ m/s})(0.3 \text{ T}) = -9.0 × 10^{-7} \text{ N} \)

Post a Comment

0 Comments